Radio carbon dating assumptions

When we look at sand in an hourglass, we can estimate how much time has passed based on the amount of sand that has fallen to the bottom.

radio carbon dating assumptions-74

Yet this view is based on a misunderstanding of how radiometric dating works.

Part 1 (in the previous issue) explained how scientists observe unstable atoms changing into stable atoms in the present.

We find places on the North Rim where volcanoes erupted after the Canyon was formed, sending lavas cascading over the walls and down into the Canyon.

Obviously, these eruptions took place very recently, after the Canyon’s layers were deposited ().

Because of such contamination, the less than 50-year-old lava flows at Mt.

Ngauruhoe, New Zealand (), yield a rubidium-strontium “age” of 133 million years, a samarium-neodymium “age” of 197 million years, and a uranium-lead “age” of 3.908 billion years!

This source already had both rubidium and strontium.

To make matters even worse for the claimed reliability of these radiometric dating methods, these same basalts that flowed from the top of the Canyon yield a samarium-neodymium age of about 916 million years,5 and a uranium-lead age of about 2.6 billion years!

These basalts yield ages of up to 1 million years based on the amounts of potassium and argon isotopes in the rocks.

But when we date the rocks using the rubidium and strontium isotopes, we get an age of 1.143 billion years.

Part 2 explains how scientists run into problems when they make assumptions about what happened .

Tags: , ,